

Challenge Batteries

Chemwatch: 5323-77

Version No: 4.1.1.1 Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 4

Issue Date: 01/11/2019 Print Date: 22/06/2020 L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Delkor
Synonyms	Battery, Wet, Filled with Acid, Electric Storage
Proper shipping name	BATTERIES, WET, FILLED WITH ACID, electric storage
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Electric storage battery. Starting, Lighting, Ignition for Cars & Trucks etc Use involves discharge then regenerative charging cycle from external DC power source. CHARGING HAZARD. Completion of charging process includes evolution of highly flammable and explosive hydrogen gas which is readily detonated by electric spark. No smoking or naked lights. Do not attach/detach metal clips or operate open switches during
	charging process because of arcing/sparking hazard. Overcharging to excess results in vigorous hydrogen evolution - boiling - which may causegeneration of corrosive acid mist. Large installations i.e. battery rooms must be constructed of acid resistant materials and well ventilated.

Details of the supplier of the safety data sheet

Registered company name	Challenge Batteries
Address	1 Burgay Court, Osborne Park WA 6017
Telephone	+61 08 9446 6122
Fax	
Website	www.challengebatteries.com.au
Email	sales@challngebatteries.com.au

Emergency telephone number

Association / Organisation	Chemwatch Emergency Response	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	1800 951 288 (Toll free - use within AU)	+61 1800 951 288
Other emergency telephone numbers	+61 2 9186 1132 (Alternative global number)	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture		
Poisons Schedule	Poisons Schedule Not Applicable	
Classification ^[1]	Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1, Lactation Effects	
Legend:	1. Classified by Chernwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)	
SIGNAL WORD	DANGER
Hazard statement(s)	
H314	Causes severe skin burns and eye damage.
H362	May cause harm to breast-fed children.
Precautionary statement(s) Pre	evention
P201	Obtain special instructions before use.
P260	Do not breathe dust/fume.
P263	Avoid contact during pregnancy/while nursing.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P270	Do not eat, drink or smoke when using this product.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
P303+P361+P353	F ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.	
P305+P351+P338	IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P310	Immediately call a POISON CENTER or doctor/physician.	
P321	Specific treatment (see advice on this label).	
P363	Wash contaminated clothing before reuse.	
P308+P313	IF exposed or concerned: Get medical advice/attention.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7439-92-1)60-80	lead
68411-78-9)	lead oxide
7664-93-9	10-15	sulfuric acid
Not Available		as sulfuric acid <51%
9003-56-9)5-8	styrene/ butadiene/ acrylonitrile copolymer
9003-07-0)	polypropylene

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	 If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to strong acids:

- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
 Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.
- INGESTION. Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.

• Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- ▶ Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Charging process and particularly overcharging produces highly flammable and explosive hydrogen gas.	
Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	
Fire/Explosion Hazard	 Non combustible. Not considered to be a significant fire risk. Acids may react with metals to produce hydrogen, a highly flammable and explosive gas. Heating may cause expansion or decomposition leading to violent rupture of containers. May emit corrosive, poisonous fumes. May emit acrid smoke. Decomposition may produce toxic fumes of: sulfur oxides (SOx) 	
HAZCHEM	2R	

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	 Acid spills may be neutralised wirh soda ash or slaked lime. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

0.7.1	Wear protective clothing when risk of exposure occurs
Safe handling	Wear protective clothing when risk of exposure occurs.

	Use in a well-ventilated area Avoid smoking, naked lights or ignition sources. When handling, DO NOT eat, drink or smoke. Wash hands with soap and water after handling. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	Normally packed with inert cushioning material.
Storage incompatibility	Protect from accidental short-circuit.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	lead	Lead, inorganic dusts & fumes (as Pb)	0.05 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	lead oxide	Lead, inorganic dusts & fumes (as Pb)	0.05 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	sulfuric acid	Sulphuric acid	1 mg/m3	3 mg/m3	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
lead	Lead	0.15 mg/m3	120 mg/m3	700 mg/m3
sulfuric acid	Sulfuric acid	Not Available	Not Available	Not Available
polypropylene	Polypropylene	5.2 mg/m3	58 mg/m3	350 mg/m3
Ingredient	Original IDLH		Revised IDLH	
lead	Not Available		Not Available	
lead oxide	100 mg/m3		Not Available	
sulfuric acid	15 mg/m3		Not Available	
styrene/ butadiene/ acrylonitrile copolymer	Not Available		Not Available	
polypropylene	Not Available		Not Available	

MATERIAL DATA

None assigned. Refer to individual constituents.

Exposure controls

	The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.				
	Type of Contaminant:		Air Speed:		
Appropriate engineering controls	solvent, vapours, degreasing etc., evaporating from tank (in still air).				
	aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)				
	direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)		1-2.5 m/s (200-50		
			f/min.)		
	generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel gen		f/min.) 2.5-10 m/s		
	generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel gen very high rapid air motion).		f/min.) 2.5-10 m/s		
	generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel gen very high rapid air motion). Within each range the appropriate value depends on:	nerated dusts (released at high initial velocity into zone of	f/min.) 2.5-10 m/s		

	3: Intermittent, low production.	3: High production, heavy use			
	4: Large hood or large air mass in motion	4: Small hood-local control only			
	Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.				
Personal protection					
Eye and face protection	 not sufficient where complete eye protection is n material may be under pressure. Chemical goggles.whenever there is a danger of Full face shield (20 cm, 8 in minimum) may be reprotection. Alternatively a gas mask may replace splash gog Contact lenses may pose a special hazard; soft the wearing of lenses or restrictions on use, shou and adsorption for the class of chemicals in use their removal and suitable equipment should be remove contact lens as soon as practicable. Len 	ay be used where continuous eye protection is desirable, as in laboratories; spectacles are eeded such as when handling bulk-quantities, where there is a danger of splashing, or if the f the material coming in contact with the eyes; goggles must be properly fitted. equired for supplementary but never for primary protection of eyes; these afford face ggles and face shields. Contact lenses may absorb and concentrate irritants. A written policy document, describing uld be created for each workplace or task. This should include a review of lens absorption and an account of injury experience. Medical and first-aid personnel should be trained in readily available. In the event of chemical exposure, begin eye irrigation immediately and is should be removed at the first signs of eye redness or irritation - lens should be removed in shed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or			
Skin protection	See Hand protection below				
Hands/feet protection	Wear chemical protective gloves, e.g. PVC. Wear safety footwear.				
Body protection	See Other protection below				
Other protection	 Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. 				

Recommended material(s)

GLOVE SELECTION INDEX

generated selection:

Delkor

Respiratory protection

Type AE-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Respirator AE-PAPR-AUS /

AE-PAPR-2 P2 ^

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic

Material	CPI	Required Minimum	Half-Face	Full-Face	Powered Air
NATURAL RUBBER	A	Protection Factor	Respirator	Respirator	Respirator
NATURAL+NEOPRENE	A	up to 10 x ES	AE-AUS P2	-	AE-PAPR-AUS Class 1 P2
NEOPRENE	A				CidSS I FZ
		-		AE-AUS / Class	
NEOPRENE/NATURAL	A	up to 50 x ES	-	1 P2	-
NITRILE	А	up to 100 x ES	-	AE-2 P2	AE-PAPR-2 P2
PE	А				1
PVC	А	 - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses 		B1 = Acid gasses, B	2 = Acid gas or
SARANEX-23	А	hydrogen cyanide(HCN),			

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

Glove selection is based on a modified presentation of the:

The effect(s) of the following substance(s) are taken into account in the computer-

"Forsberg Clothing Performance Index".

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final

selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance

A manufactured article cased in plastic with a sealed case, terminals and flame arrestor vent caps. Case colour varies. Essentially odourless. The hazard of lead acid batteries include: CORROSIVE CONTENTS SHORT CIRCUIT - accidental discharge. Current flow by external short circuit may heat metals to welding temperatures with fire hazard; internal heat generated may boil battery acid with evolution of large amounts of highly corrosive acid mist/vapour. Boiling may develop internal pressure and cause explosion with scattering of acid contents. Battery circuits must include electrical fusible links; terminals and external metal parts must be insulated. Do not clean terminals, battery top with conducting liquids SPILL - damage to casing or overturning may cause corrosive acid contents to spill, causing skin burns on contact. Acid reacts quickly with many metals, generating highly flammable and explosive hydrogen gas; may also weaken metal structures.

compounds(below 65 degC)

Physical state	Manufactured	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	<1 acid content	Decomposition temperature	Not Applicable
Melting point / freezing point (°C)	>149 for case	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	74.2 hydrogen gas	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	4.1 hydrogen gas	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Applicable	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Applicable

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	Contact with alkaline material liberates heat
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

	Not normally a hazard due to physical form of product.
Inhaled	Acidic corrosives produce respiratory tract irritation with coughing, choking and mucous membrane damage. Symptoms of exposure may include dizziness, headache, nausea and weakness. In more severe exposures, pulmonary oedema may be evident either immediately or after a latent period of 5-72 hours. Symptoms of pulmonary oedema include a tightness in the chest, dyspnoea, frothy sputum and cyanosis. Examination may reveal hypotension, a weak and rapid pulse and moist rates. Death, due to anoxia, may occur several hours after onset of the pulmonary oedema. Exposure to high concentrations causes bronchitis and is characterised by the onset of haemorrhagic pulmonary oedema.
Ingestion	Ingestion of acidic corrosives may produce circumoral burns with a distinct discolouration of the mucous membranes of the mouth, throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Oedema of the epiglottis may produce respiratory distress and possibly, asphyxia. Nausea, vomiting, diarrhoea and a pronounced thirst may occur. More severe exposures may produce a vomitus containing fresh or dark blood and large shreds of mucosa. Shock, with marked hypotension, weak and rapid pulse, shallow respiration and clammy skin may be symptomatic of the exposure. Circulatory collapse may, if left untreated, result in renal failure. Severe cases may show gastric and oesophageal perforation with peritonitis, fever and abdominal rigidity. Stricture of the oesophageal, gastric and pyloric sphincter may occur as within several weeks or may be delayed for years. Death may be rapid and often results from asphyxia, circulatory collapse or aspiration of even minute amounts. Delayed deaths may be due to peritonitis, severe nephritis or pneumonia. Coma and convulsions may be terminal.
Skin Contact	Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
Eye	Direct eye contact with acid corrosives may produce pain, lachrymation, photophobia and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possible irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply vascularised and opaque resulting in blindness.
Chronic	Repeated or prolonged exposure to acids may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. The impact of inhaled acidic agents on the respiratory tract depends upon a number of interrelated factors. These include physicochemical characteristics, e.g., gas versus aerosol; particle size (small particles can penetrate deeper into the lung); water solubility (more soluble agents are more likely to be removed in the nose and mouth). Given the general lack of information on the particle size of aerosols involved in occupational exposures to acids, it is difficult to identify their principal deposition site within the respiratory tract. Acid mists containing particles with a diameter of up to a few micrometers will be deposited in both the upper and lower airways. They are irritating to muccus epithelia, they cause dental erosion, and they produce acute effects in the lungs (symptoms and changes in pulmonary function). AsthmatIcs appear to be at particular risk for pulmonary effects.
	Occupational exposure to strong inorganic acid mists containing sulfuric acid is designated by IARC to be carcinogenic, increased risk of laryngeal cancer being seen with chronic exposures. Repeated minor exposures to mists can cause erosion of teeth and inflammation of the upper respiratory tract leading to chronic bronchitis. Repeated skin contact with dilute solutions may produce dermatitis. Lungs of sulfuric acid plant workers appear to be less affected than the lungs of workers exposed to "dust". There is evidence that corrosion of tooth enamel occurs at 1 mg/m3 but that acclimated workers could tolerate three to four times that level. Forming room workers in a battery factory exposed to 3 to 16 mg/m3 sulfuric acid mist concentrations exhibited the most serious signs of erosion whilst charging room workers, exposed to 0.08 to 2.5 mg/m3 were affected to a lesser degree. Workers chronically exposed to sulfuric acid mists may show various skin lesions, tracheobronchitis, stomatitis, conjunctivitis and gastritis.

Delkor	TOXICITY	IRRITATION	
	Not Available	Not Available	
lead	ΤΟΧΙΟΙΤΥ	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available	
	Inhalation (rat) LC50: >5.05 mg/l4 h ^[1]		
	Oral (rat) LD50: >2000 mg/kg ^[1]		
	ΤΟΧΙΟΙΤΥ	IRRITATION	
lead oxide	Not Available	Not Available	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
sulfuric acid	Inhalation (guinea pig) LC50: 0.036 mg/l/8H ^[2]	Eye (rabbit): 1.38 mg SEVERE	
	Oral (rat) LD50: 2140 mg/kg ^[2]	Eye (rabbit): 5 mg/30sec SEVERE	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
styrene/ butadiene/ acrylonitrile copolymer	Dermal (rabbit) LD50: 5010 mg/kg ^[2]	Not Available	
acryiomime copolymer	Oral (rat) LD50: 5010 mg/kg ^[2]		
	тохісіту	IRRITATION	
polypropylene	Oral (rat) LD50: >8000 mg/kg ^[2]	Not Available	
Legend:	nd: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise		

WARNING: Lead is a cumulative poison and has the potential to cause abortion and intellectual impairment to unborn children of pregnant workers.
The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.
Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
Occupational exposures to strong inorganic acid mists of sulfuric acid: Ultrafine particles (UFPs) may be produced at lower temperatures during the 3D printing process Concerns have been raised regarding airborne UFP concentrations generated while printing with ABS, as UFPs have been linked with adverse health effects
 * For pyrolyzate for poly-alpha-olefins (PAOs): PAOs are highly branched isoparafinic chemicals produced by oligomerisation of 1-octene, 1-decene, and/or 1-dodecene. The crude polyalphaolefin mixture is then distilled into appropriate product fractions to meet specific viscosity specifications and hydrogenated. Read across data exist for health effects endpoints from the following similar <i>hydrogenated</i> long chain branched alkanes derived from a C8, C10, and/or C12 alpha olefins: Decene homopolymer Decene/dodecene copolymer Doctene/dodecene copolymer Doctene/docecene trimer The data for these structural analogs demonstrated no evidence of health effects. In addition, there is evidence in the literature that alkanes with 30 or more carbon atoms are unlikely to be absorbed when administered orally. The physicochemical data suggest that it is unlikely that significant absorption will occur. If a substance of the size and structure of a typical PAO is absorbed, then the principal mechanisms of absorption after oral administration are likely to be passive diffusion and absorption by way of the lymphatic system. The former requires both good lipid solubility and good water solubility as the substance has to partition from an aqueous environment through a lipophilic membrane into another aqueous environment during absorption. Absorption by way of the lymphatics occurs by mechanisms analogous to those that absorb fatty acids and is limited by the size of the molecule. Lipophilicity generally enhances the ability of chemicals to cross biological membranes. Biotransformation by mixed function oxidases often increases the water solubility of a substance; however, existing data suggest that these substances will not undergo oxidation to more hydrophilic metabolites. Finally, a chemical must have an active functional group that can there across will not undergo oxidation to more hydrophilic metabolites. Finally, a chemical must have an active functional group th

	faeces. At the same time, the hydrophobic properties of the aqueous systemic circulation and reach potential tar In addition to the general considerations discussed abor transportation, exposure by the inhalation route is unlike to generate a high concentration of respirable particles i Acute toxicity : PAOs (decene/dodecene copolymer, oc tested for acute oral toxicity. There were no deaths whe copolymer and dodecene trimer) and at 2,000 mg/kg (imit dose, PAOs (decene/dodecene copolymer, octene/decene/dor mortality was observed for any substance when adminis substances was greater than the 2000 mg/kg limit dose, PAOs (decene homopolymer, is absorbed (unexpectedly for and is eliminated slowly PAOs (decene homopolymer, decene/dodecene copolyr to aerosols of the substances at nominal atmospheric cr the maximum attainable concentrations under the condi mortality was noted, and all animals fully recovered follo mg/L indicates a relatively low order of toxicity for these Repeat dose toxicity : Eight repeated-dose toxicity stude administration have been conducted with three structure following repeated applications, due to their similarity in One 28-day oral toxicity study in rats, one 90-day derma for decene homopolymer. A rat oral combined reproduct homopolymer. In addition, 28-day rat oral toxicity studies /dodecene copolymer); and a 90-day rat dermal toxicity low order of repeated dose toxicity. The dermal NOAEL The oral NOAEL for 1-decene homopolymer is between Rats exposed repeatedly by dermal exposure at doses of the sebaceous glands, hyperplasia/hyperkeratosis of weeks. Males showed decreased body weight gain and In a 90-day feeding study rats receiving 20000 pm of 1 toxicity. Marginal effects on clinical chemistry (glucose a Reproductive toxicity : Decene homopolymer (with 11 application to presumed-pregnant rats at doses of 0, 80 parameters of reproductive performance during gestatio NOAEL in this study for developmental parameters was Genotoxicity : Information for the following PAOS (dece decene/dodece	rget organs in limited concentrations. ve, the low volatility of PAOs indicates by. In particular, the high viscosity of t in the air. tene/decene/dodecene homo-polymen in the test materials were administered ctene/decene/dodecene copolymer) ir indicating a relatively low order of too decene copolymer, and dodecene trin stered at the limit dose of 2000 or 500 indicating a relatively low order of too a high molecular weight polymer) to a mer, and decene trimer) have been te oncentrations of 2.5, 5.0, and 5.06 mg tions of the tests, due to the low volat wing depuration. The lack of mortality substances. dise using two different animal species al analogs. These data suggest that the chemical structures and physicochem al and two 90-day dietary studies in ra- tive toxicity and 91-day systemic toxic s exist for two structurally analogous a 5,000 and 20,000 mg/kg/day in Spra of 2000 mg/kg decene/dodecene copy the epidermis and dermal inflammatic altered serum chemistry. -decene, homopolymer, hydrogenate- ind ALT in males; sodium, phosphorus to and 2000 mg/kg/day. Dermal admir n, nor did it adversely affect <i>in uteros</i> 2000 mg/kg/day. the nompolymer, octene/decene/dodecene/dodecene/ and 90% <i>C10 alpha olefins; approx.</i> 3 e mutation assays, <i>in vitro</i> chromoson ances. Neither mutagenicity nor clast metabolic activation. ilar properties to mineral oils, they do umors in C3H mice treated with a 50 tu	s that, under normal conditions of use or hese substances suggests that it would be difficult ar, and dodecene trimer) have been adequately d at doses of 5,000 mg/kg (decene/dodecene n rats. Overall, the acute oral LD50 for these kicity. her) have been tested for acute dermal toxicity. No 0 mg/kg. Overall, the acute dermal LD50 for these kicity. a moderate degree in rat skin sted for acute inhalation toxicity. Rats were exposed //L, respectively, for four hours. These levels were ility and high viscosity of the test material. No v at concentrations at or above the limit dose of 2.0 s, rats and mice, and oral and dermal routes of the structural analogs exhibit a low order of toxicity nical properties. ts, and a dermal carcinogenicity study in mice exist ity study was also conducted with decene substances (dodecene trimer and octene/decene ene copolymer. Results from these studies show a al to or greater than 2000 mg/kg/day. tgue-Dawley rats. Joymer showed increased incidences of hyperplasia on. These symptoms generally subsided within 2 d did not exhibit any clinical signs of systemic s and calcium in females) were seen. lies show a low order of reproductive/ developmental ested. The lack of effects on fertility in this study or als indicates that PAOs are unlikely to exert effects tered once daily on gestation days 0-19 via dermal istration of the test material did not adversely affect survival and development of the offspring. The lecene copolymer, dodecene trimer; and <i>3% trimer and 51% tetramer, 16% pentamer and</i> nal aberration assays, or <i>in vivo</i> chromosomal ogenicity were exhibited by any of these substances not contain polycyclic aromatic hydrocarbons, or
STYRENE/ BUTADIENE/ ACRYLONITRILE COPOLYMER & POLYPROPYLENE	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limite	d in animal testing.	
Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×

Legend:

X − Data either not available or does not fill the criteria for classification
→ Data available to make classification

×

Aspiration Hazard

SECTION 12 ECOLOGICAL INFORMATION

Mutagenicity

X

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURCE
Delkor	Not Available	Not Available	Not Available		Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE		SOURCE
	LC50	96	Fish	0.001-0	.06756mg/L	2
lead	EC50	48	Crustacea	0.029mg	g/L	2
	EC50	72	Algae or other aquatic plants	0.0205n	ng/L	2

	BCFD	8	Fish	4.324mg/L	4
	NOEC	672	Fish	0.00003mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
lead oxide	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	=8mg/L	1
sulfuric acid	EC50	48	Crustacea	=42.5mg/L	1
	EC50	72	Algae or other aquatic plan	nts >100mg/L	2
	NOEC	Not Available	Crustacea	0.15mg/L	2
styrene/ butadiene/	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCI
acrylonitrile copolymer	LC50	96	Fish	11.5mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCI
polypropylene	LC50	96	Fish	12.237mg/L	3
	EC50	96	Algae or other aquatic plan	ts 40.113mg/L	3

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
polypropylene	LOW	LOW	

Bioaccumulative potential

Ingredient	Bioaccumulation
polypropylene	LOW (LogKOW = 1.6783)
Mahilitu in anil	

Mobility in soil

Ingredient	Mobility
polypropylene	LOW (KOC = 23.74)

SECTION 13 DISPOSAL CONSIDERATIONS

١	Vaste treatment methods	
	Product / Packaging disposal	Lead acid batteries are recyclable.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	2R

Land transport (ADG)

UN number	2794			
UN proper shipping name	BATTERIES, WET, FILLED WITH ACID, electric storage			
Transport hazard class(es)	Class 8 Subrisk Not Applicable			
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions 295 AU08 Limited quantity 1 L			

Air transport (ICAO-IATA / DGR)

UN number	2794			
UN proper shipping name	Batteries, wet, filled with	acid electric storage		
	ICAO/IATA Class 8			
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	8L		
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
	Special provisions		A51 A164 A183 A802	
	Cargo Only Packing Instructions		870	
	Cargo Only Maximum Qty / Pack		No Limit	
Special precautions for user	Passenger and Cargo Packing Instructions		870	
	Passenger and Cargo Maximum Qty / Pack		30 kg	
	Passenger and Cargo	Limited Quantity Packing Instructions	Forbidden	
	Passenger and Cargo Limited Maximum Qty / Pack		Forbidden	

Sea transport (IMDG-Code / GGVSee)

UN number	2794		
UN proper shipping name	BATTERIES, WET, FILLED WITH ACID electric storage		
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	EMS NumberF-A , S-BSpecial provisions295Limited Quantities1 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

LEAD IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs		
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1 : Carcinogenic to humans		
Chemical Footprint Project - Chemicals of High Concern List	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B : Possibly carcinogenic to humans		
LEAD OXIDE IS FOUND ON THE FOLLOWING REGULATORY LISTS			
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6		
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -	Chemical Footprint Project - Chemicals of High Concern List		
Schedule 10 / Appendix C	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC		
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -	Monographs		
Schedule 5	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2A: Probably carcinogenic to humans		
SULFURIC ACID IS FOUND ON THE FOLLOWING REGULATORY LISTS			
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC		
Australia Inventory of Chemical Substances (AICS)	Monographs		
Chemical Footprint Project - Chemicals of High Concern List	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1 : Carcinogenic to humans		
STYRENE/ BUTADIENE/ ACRYLONITRILE COPOLYMER IS FOUND ON THE FOLLOWING	REGULATORY LISTS		
Australia Inventory of Chemical Substances (AICS)	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs		
POLYPROPYLENE IS FOUND ON THE FOLLOWING REGULATORY LISTS			

Australia Inventory of Chemical Substances (AICS) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

National Inventory	Status		
Australia - AICS	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (lead; sulfuric acid; styrene/ butadiene/ acrylonitrile copolymer; polypropylene)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	No (styrene/ butadiene/ acrylonitrile copolymer; polypropylene)		
Japan - ENCS	No (lead)		
Korea - KECI	Yes		
New Zealand - NZIoC	No (lead oxide)		
Philippines - PICCS	Yes		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	No (lead oxide)		
Vietnam - NCI	Yes		
Russia - ARIPS	No (lead oxide)		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)		

SECTION 16 OTHER INFORMATION

Revision Date	01/11/2019
Initial Date	16/10/2018

SDS Version Summary

Version	Issue Date	Sections Updated
4.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average PC – STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit_o IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.